Math 4550 Homework 4 Solutions

 $im(\varphi) = 3Z$ is circled

$$Ker(\varphi) = \{0\}$$

 $im(\varphi) = 3\mathbb{Z}$

(c) Given
$$m, n \in \mathbb{Z}$$
 we have $\varphi(m+n) = 3(m+n) = 3m+3n = \varphi(m)+\varphi(n)$

```
(d)
```

q is one-to-one:

Suppose $\varphi(n) = \varphi(n)$ for some $m, n \in \mathbb{Z}$.

Then 3m=3n.

So, m=n

q is not unto:

2EZL but there is no neZL with $\varphi(n)=2$ since that would require 3m=2 or M= 3 which is not in Z. 2) Recall that IR*=IR-{0}}
is a group under multiplication.

The identity of IR* is 1.
So,
$$\ker(\varphi) = \{x \mid \varphi(x) = 1\}$$

 $= \{x \mid x^3 = 1\}$
 $= \{1\}$

(c)

$$\varphi \text{ is a homomorphism:}$$

Given $x,y \in \mathbb{R}^*$ we have that

 $\varphi(xy) = (xy)^3 = x^3y^3 = \varphi(x)\varphi(y)$
 $\varphi \text{ is one-to-one:}$

Suppose $\varphi(x) = \varphi(y)$ for some $x,y \in \mathbb{R}^*$.

Then, $x^3 = y^3$.

So, $(x^3)^{1/3} = (y^3)^{1/3}$.

Vsiny properties of cube root

Thus, $x = y$.

 $\varphi \text{ is onto:}$

Let $y \in \mathbb{R}^*$

Set $x = y^{1/3}$ which is also in \mathbb{R}^*

Then, $\varphi(x) = x^3 = (y^{1/3})^3 = y$.

(b) Given
$$A, B \in GL(2, TR)$$
 we have $\varphi(AB) = \det(AB) = \det(A) \det(B) = \varphi(A) \varphi(B)$

Property of

op is unto:

Given
$$x \in \mathbb{R}^*$$
 set $A = \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix}$.

Since
$$x \in \mathbb{R}^+$$
 we know $x \neq 0$, thus $\det(A) = x \neq 0$ so $A \in GL(2,\mathbb{R})$.

And
$$\varphi(A) = \det(A) = X$$
.

det
$$(A) = X + G(2,R)$$

And $\varphi(A) = \det(A) = X$.

Thus, φ is onto R^* .

(X0) φ

$$\varphi(0) = \det(120) = 1$$

$$\varphi(120) = \det(120) = 1$$

$$\varphi(\frac{1/20}{02}) = \det(\frac{1/20}{02}) = 1$$

$$\varphi(\frac{1/20}{02}) = \det(\frac{1/20}{02}) = 1$$

$$So, \varphi(\frac{10}{01}) = \varphi(\frac{1/20}{02}) = 1$$

So,
$$\varphi(0) = \varphi(02)$$

Thus φ is not one - to - une.

(d) Recall that 1 is the identity of \mathbb{R}^* . $\ker(\varphi) = \{A \mid A \in GL(2/\mathbb{R}) \text{ where } \varphi(A) = 1\}$ $= \{A \mid A \in GL(2/\mathbb{R}) \text{ where } \det(A) = 1\}$ $= SL(2/\mathbb{R})$

From (c) we saw that φ is onto. Thus, $im(\varphi) = \mathbb{R}^{*}$.

(a)
$$\varphi(4) = \varphi(1+1+1+1) = \varphi(1)+\varphi(1)+\varphi(1)+\varphi(1)$$

= $5+5+5+5=20$
 $\varphi(1)=5$ is given

(b) Since
$$\varphi(1)=5$$
We know $\varphi(-1)=-5$. $\Rightarrow \varphi(x)=[\varphi(x)]^{-1}$

(c)

$$\varphi(-3) = \varphi((-1) + (-1) + (-1))$$

 $= \varphi(-1) + \varphi(-1) + \varphi(-1)$
 $= -5 - 5 - 5 = -15$
 $= -5 - 5 - 5 = -15$
A part (b)

(a) Let c, d EG2.

Since q is onto there exists a, b ∈ G, with $\varphi(\alpha) = c$ and q(b) = d.

Then,

 $cd = \varphi(\alpha)\varphi(b) = \varphi(\alpha b) = \varphi(b\alpha) = \varphi(b)\varphi(\alpha) = dc$

honomorphism

G, is abelian
so ab=ba

Thus, cd = dc. So, Gz is abelian

(h)

Zb is abelian

Do is not abelian

By part (a) they cannot be isomorphic.

(c) Since G, is cyclic there exists 9EG, with G = < 97.

Let's show that $G_2 = \langle \varphi(g) \rangle$.

Let yeGz.

Since q is unto there exists XEG, with q(x)=y.

Since G = <g> we have that x = gk for some REZ.

 $y = \varphi(x) = \varphi(g^k) = [\varphi(g)]^k$ Then,

Thus, $\varphi(y)$ generates G_2 .

(d) Zy is cyclic Zex Ze is not cyclic Thus by (c) they are not isomorphic

(a) = o(ee) =
$$\varphi(e_1)\varphi(e_1)$$

(a) We have
$$\varphi(e_i) = \varphi(e_ie_i) = \varphi(e_i)\varphi(e_i)$$

So, $\varphi(e_i)^{-1}\varphi(e_i) = \varphi(e_i)^{-1}\varphi(e_i)\varphi(e_i)$

Thus,
$$e_2 = e_2 \varphi(e_1)$$

$$\varphi(x)\varphi(x') = \varphi(xx') = \varphi(e_i) = e_z$$

Thus,
$$\left[\varphi(x)\right]^{-1} = \varphi(x^{-1})$$

(c)
$$| \text{Ker}(\varphi) = \{ x \in G_1 \mid \varphi(x) = e_2 \}$$

(i) By (a) we know
$$\varphi(e_i) = e_2$$

ii) Given
$$x,y \in \text{Ker}(\varphi)$$

$$\varphi(xy) = \varphi(x) \varphi(y) = e_z e_z = e_z$$

$$\varphi(xy) = \varphi(x) \varphi(y) = e_z e_z = e_z$$

So xy E ker(q).

Then,
$$\varphi(z) = e_2$$
.

$$S_{0}, [\varphi(z)]^{-1} = e_{2}^{-1}$$

Thus, $\varphi(z^{-1}) = e_2$

Thus, Z'Eker(q).

By (i)-(iii) we know ker(q) \le G1.

(i) We know $e_z = \varphi(e_i)$. So, $e_z \in im(\varphi)$.

Then there exist $x_1, x_2 \in G$, with $\varphi(x_1) = y_1$ and $\varphi(x_2) = y_2$

Thus, $\varphi(x_1x_2) = \varphi(x_1)\varphi(x_2) = y_1y_2.$

Since X,XzEG this shows that Y,YzEim(q).

Then there exists ae G, with $\varphi(\alpha)=Z$.

 $\varphi(\bar{a}') = [\varphi(a)]' = \bar{z}'$ Thus,

Since act, we Know Z'Eim(q)

By (i)-(iii) we have that $im(\varphi) \leq G_2$.

(e)

(D) Suppore q is one-to-one.

By part (a) We know $\varphi(e_1)=e_2$

and thus e, Ekerlal.

50, {e,} = ker(\pa). Let XEKer(q).

Then $\varphi(x) = e_z$

Since $\varphi(x) = e_2 = \varphi(e_1)$ and φ is

Une-to-one this gives x=e1.

Thus Ker(q) = {e,}.

Therefore Ker(q) = {e, }. (CF) Suppose Ker(q) = {e, 3. Let x, y e G, with $\varphi(x) = \varphi(y)$. Then $\varphi(x)\varphi(y') = \varphi(y)\varphi(y')$ $So, \varphi(xy^{-1}) = \varphi(yy^{-1})$ Thus, $\varphi(xy') = \varphi(e_i)$ So, $\varphi(xy^{-1}) = C_2$. Thus, xy = Kerlq). So, xy = e, Then x = y So, q is one-to-one.

(4)

ep is onto iff im (ep) = G2

This is the definition of onto.

Suppose $G_1 \cong G_2$ and $H_1 \cong H_2$.

Then, there exist isomorphisms $q_1: G_1 \rightarrow G_2$ and $q_2: H_1 \rightarrow H_2$.

Define $\varphi: G_1 \times H_1 \rightarrow G_2 \times H_2$ by $\varphi(\alpha,b) = (\varphi_1(\alpha), \varphi_2(b)).$

Let's show that φ is an isomorphism which will give $G_1 \times H_1 \cong G_2 \times H_2$.

$\frac{\varphi \text{ is a homomorphism:}}{\text{Let } (a,b), (c,d) \in G, \times H, }$ $\frac{\varphi \text{ is a homomorphism:}}{\text{Let } (a,b), (c,d) \in G, \times H, }$ $= \varphi \text{ (ac,bd)}$ $= (\varphi, (ac), \varphi_2(bd))$ $= (\varphi, (a)\varphi, (c), \varphi_2(b), \varphi_2(d))$ $= (\varphi, (a), \varphi_2(b), (\varphi, (c), \varphi_2(d)), (\varphi, (c), \varphi_2(d))$

Thus, q is a homomorphism.

op is onto: Let (y,, y2) EG2 XH2. Since y, EGz and P,: G, > Gz is onto there exists $x_i \in G_i$ with $\varphi_i(x_i) = y_i$. Since yz EHz and Pz: H, -> Hz is onto there exists $x_2 \in H_1$ with $\varphi_2(x_2) = y_2$. Then (x,, xz) ∈ G, x H, and $\varphi(x_1, x_2) = (\varphi(x_1), \varphi(x_2)) = (y_1, y_2).$ Thus, q is onto. q is one-tr-one: Suppose $\varphi(a,b) = \varphi(c,d)$ where $(a,b),(c,d)\in G,\times H_1.$ Then, $(\varphi_1(a), \varphi_2(b)) = (\varphi_1(c), \varphi_2(d))$ So, $\varphi_1(\alpha) = \varphi_1(c)$ and $\varphi_2(b) = \varphi_2(d)$. Since quis one-to-one we get a=c. Since 92 is one-to-one we get b=d.

Thus, (a,b)=(c,d). So, φ is one-to-one.